ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Solid state kinetics of Cr(III) complex derived from Schiff base of 5-amino1,2,3,4 thiatriazole with-orthomethoxybenzaldehyde.

Ajay Kumar, Ku. Sarita Prasad and Akhilesh Prasad

University Department of Chemistry, Magadh University, Bodhgaya-824234, India

Abstract:

Cr(III) form 2 : 1 complex with Schiff base ligand of 5-amino 1,2,3,4 thiatriazole and ortho-methoxybenzaldehyde. Kinetic parameters like order of reaction activation energy, apparent frequency factor and apparent entropy of activation of second stage of the decomposition of complex have been determined using graphical method of Freeman -Carroll and Doyl's method as modified by Zsako using non-isothermal TG curve.

Key Word : - Solid State kinetics , Thermogravimetric analysis, Schiff base. T.G. curve, activation energy, order of reaction, entropy of activation and frequency factors.

Introduction

In the recent years the coordination chemistry of transition metal and their derivatives have been widely studied due to their biological importance ⁽¹⁻³⁾. A large number of Schiff bases and their complexes have been studied for their important properties e.g. their ability to reversibility bind oxygen transfer of an amino group and complexing ability towards some toxic metal ⁽⁴⁻⁶⁾ chemical parameters of Schiff bases have been determined with the help of thermogravimetric analysis. This technique involve change in weight of a system under examination with increase of temperature at a pre-determine preferably at a linears rate of study the solid state reaction. A number of workers have demonstrated its usefulness ⁽⁷⁻⁸⁾. Thermal analysis technique is becoming a usefull tool in different fields of study such as chemical science, polymer science, biological science and medical scince⁽⁸⁻¹⁶⁾.

The present paper deals the solid state kinetics of Cr(III) complex with 5-amino-**1,2,3,4-thiatriazole**) and determine the kinetics parameters such as order of reaction, frequency factor, activation energy and entropy of activation using Freeman-Carroll method as well as Doyles method modified by Zsako^{17, 17, 19}.

Preparation of Schiff base :- 1:1 molar solution of o-methoxybenzaldehyde and 5-amino-1,2,3,4-thiatrizole in ethanol are mixed and condensed in acidic medium. Light Yellow solid Schiff base is filtered and recrystallized with ethanol.

Preparation of complex of Cr(III)

0.002 M of ligand in ethanolic solution was mixed with 0.001M Cr(III) Chloride in ethanolic solution. The resulting solution was refluxed for half hour on steam bath. Greenish White colour precipitate was obtained. The precipitate was filtered off and washes with ethanol and dried in a desiccator over anhydrous CaCl₂.

Results and discussion

The result obtained by the usual elemental analysis and estimation of metal content are suggestive of the molecular formula $[(CrL_2Cl_2) Cl]$ and the molecular weight 598.355 to the complexes.

The basis of the calculation of kinetic parameter from a TG curve is based on the formal kinetic equation $-\frac{d\alpha}{dt} = k\alpha$

Where α is the fraction of the initial compound undergoing reaction, n is the order of reaction, and k is the specific rate constant.

The specific rate constant depends upon the temperature by the expression, $k = Ae^{-E/RT}$.

where A is the pre-exponential factor, E the activation energy and R is the gas constant.

The thermo-gram of the complex shows four stages of the decomposition. Third stage of the decomposition was selected for the determination of kinetic parameter, i.e. order of reaction, activation energy, entropy of activation and frequency factor firstly by graphical method of Freeman – Carroll²⁰ and Doyle's method as modified²¹ by Zsako²².

Table – I

The following table contains the data obtained by Freeman -Carroll method.

	Dat	a obtained by Fre	eman an <mark>d Carroll method.</mark>	14
S.No.	Temp(⁰ C)	Weight (mg)	$\frac{\Delta \log dw/dt}{\Delta \log Wr}$	$\frac{\Delta T^{-1} \times 10^{-3}}{\Delta \log Wr}$
1	180	4.153935	4.40375	3.11257
2	190	4.102416	7.14706	3.58391
3	200	4.060244	7.76173	4.07643
4	210	3.999377	-9.54563	1.93235
5	220	3.912207	-6.21833	1.37416
6	230	3.770692	-4.77326	0.91470
7	240	3.624830	-0.25931	0.76481
8	250	3.424622	-1.70116	0.46100
9	260	3.163112	-0.85894	0.26561
10	270	2.834432	-0.37273	0.12971

Initial Weight at $160^{\circ}C = 4.293494mg$.

Final Weight at $280^{\circ}C = 2.446189mg$.

Plotting graph between $\left[\Delta log \frac{dw}{dt} / \Delta log Wr\right]$ versus $\left[\Delta T^{-1}\right] / \left[\Delta \log Wr\right]$. A straight line is obtained by the line intercept at 0.8 and slope 4.8 Applying

Ea = 2.300 X slope gave the activation energy equal to 22.10 Kcal/mole and order of reaction is 0.8M/sec.

The value of mass obtained of different temperature as in graphical method and utilised to calculate different formation using Doyle's method as modified by Zsako.

Firstly α , $log\alpha$, $log\left(ln\frac{1}{1-\alpha}\right)$ and $log\left(\frac{\alpha}{1-\alpha}\right)$ have been calculated using the following Table II.

Table – II

	S.No.	Temp(⁰ C)	Weight (mg)	$\alpha = \frac{W_0 - W_t}{W_0 - W_f}$	log α	$log\left(ln\frac{1}{1-\alpha}\right)$	$log\left(\frac{\alpha}{1-\alpha}\right)$
	1	170	4.218063	0.040833	-1.388989	-1.379967	-1.370883
	2	180	4.153935	0.075547	-1.121781	-1.104835	-1.087665
	3	190	4.102416	0.103436	-0.985328	-0.961834	-0.937909
	4	200	4.060244	0.126265	-0.898717	-0.869736	-0.840097
	5	210	<mark>3.999</mark> 377	0.159214	-0. <mark>798018</mark>	-0.760905	-0.722704
-	6	220	<mark>3.912</mark> 207	0. <mark>206402</mark>	-0 <mark>.685287</mark>	-0.636054	-0.584887
	7	230	3.770 <mark>69</mark> 2	0.283008	-0 <mark>.548201</mark>	-0.477960	-0.403716
	8	240	3.624830	0.361967	-0 <mark>.4413</mark> 31	-0.347400	<mark>-0.24</mark> 6174
	9	250	3.424622	0.470346	-0 <mark>.32758</mark> 3	-0.19686 <mark>3</mark>	-0.051575
	10	260	3.163112	0.611909	-0.213313	-0.023873	0.197753
e	11	270	2.834432	0.789833	-0 <mark>.102465</mark>	0.193083	0.574970

Data of log $f(\alpha)$ values for the complex [CrL₂Cl₂]Cl calculated at different temperatures.

Initial weight at $160^{\circ} = 4.293494$ mg

Final weight at $280^{0} = 2.446189mg$

The values obtained above have been utilized to calculate $B_0 \& \delta_0$, $B_1 \& \delta_1$, $B_2 \& \delta_2$, using standard deviation method.

Table III

Calculation of B₀ for different activation energies and δ_0 values at different temperature for [CrL₂Cl₂]Cl complex

S.No.	Temp(⁰ C)	20 kcal	22 kcal	24 kcal
1	170	11.226011260	12.292011260	13.351011260
2	180	11.258219243	12.301219243	13.339219243
3	190	11.167672081	12.189672081	13.204672081
4	200	11.036283047	12.041283047	13.035283047
5	210	10.928981522	11.910981522	12.892981522
6	220	10.837713393	11.807713393	12.765713393
7	230	10.784798635	11.732798635	12.673798635
8	240	10.705669336	11.635669336	12.559669336
9	250	10.637417196	11.555417196	12.461417196
10	260	9.980686628	11.479686628	12.373686628
11	270	10.528535141	11.470535141	12.285535141
	$Average(\underline{}_{0})$	10.826544316	11.856089771	12.812998862
	Standard deviation(δ_0)	0.353334882	0.299031231	0.363842121

Table- IV

S.No.	Temp(⁰ C)	12kcal	14kcal	16kcal
1	300	6.864032694	7.977032694	9.078032694
2	310	6.991165252	8.081165252	9.156165252
3	320	6.991165748	8.063165748	9.113165748
4	330	6.948263549	7.994263549	9.030263549
5	340	6.922094743	7.956094743	8.969094743
6	350	6.921946387	7.932946387	8.929946387
7	360	6.960040433	7.954040433	8.933040433
8	370	6.969599959	7.946599959	8.906599959
9	380	7.009136594	7.968136594	8.916136594
10	390	7.071127343	8.018127343	8.948127343
11	400	7.182083301	8.111083301	9.027083301
	$AVERAGE(\overline{B_1})$	6.984605091	8.000241455	9.000696000
	Standard deviation(δ_1)	0.0807309	0.057373224	0.081865117

Calculation of B_1 for different activation energies and δ_1 values at different temperature for $[CrL_2Cl_2]Cl$ complex

Table- V

Calculation of B₂ for different activation energies and δ_2 values at different temperature for [CrL₂Cl₂]Cl complex

S No	Temp(⁰ C)	16kcal	18kcal	20kcal
1	300	9.087117030	10.171117030	11.244117030
2	310	9.173334572	10.240334572	11.292334572
3	320	9.137090827	10 <mark>.180090827</mark>	11.215090827
4	330	9.059903323	10 <mark>.082903323</mark>	11.094903323
5	340	9.007296101	10. <mark>0082961</mark> 01	11.004296101
6	350	8.981112696	9.964112696	10.938112696
7	360	9.007284294	9.973284294	10.929284294
8	370	9.007826398	9.961826398	10.900826398
9	380	9.061424710	9.992424710	10.913424710
10	390	9.169752720	10.082752720	10.391752720
11	400	9.408970113	10.309970113	11.205970113
	$AVERAGE(\overline{B_2})$	9.100101162	10.087919344	11.011828435
	Standard deviation(δ_2)	0.116838543	0.115928675	0.240709676

Table – VI							
b	b = 0 b = 1 b = 2						
Ea		Ea		Ea			
k cal /mol	δ_0	k cal /mol	δ1	k cal/mol	δ_2		
20	0.353334882	12	0.0807309	16	0.116838543		
22	0.299031231	14	0.057373224	18	0.115928675		
24	0.363842121	16	0.081865117	20	0.240709676		

By using the above table we calculate the minimum value of δ for B₀, B₁, and B₂ i.e. for zero order, for zero order, first order and second order respectively as in table VII.

The minimum value for B_1 is 0.057373224 and here order of reaction is 1M/sec and activation energy 14 kcal/mole.

The apparent frequency factor $Z = \frac{1.429 \text{ X}}{10^2 \text{ sec}^{-1}}$ and apparent entropy of activation.

where calculated using the equation

 $\log z = \overline{B} + \log Rq - \log Ea$

Where R is the gas constant and a is the heating rate. The frequency factor was calculated to be 1.429×10^2 sec⁻¹ and the apparent activation entropy was also found to be -90.515350646 e.u. by the solving equation. JCR

 $\Delta S^{\neq} = 8.3143 log zh/kT$

Table - VIII					
SN.	Methods	Order of reaction	activation energy		
1	Freeman and Carroll	0.8M/sec	22.10 kal/mol		
2	J. Zsako	1M/sec	14.000 kal/mol		

The value for absolute temperature T was taken as the temperature of which the weight loss was half of the total weight loss for the considered step i.e. 525 Kelvin.

References:

- (1) C.Q Debra, A.K.kathy, R.K.Earl, Antiviv, Res-71(1)24, (2006)
- (2) Y. Teitz, D.Rohen, A.Vansover, T. Stemastsky, J.L.Riggs, Antiviv. Res.240-305 (1194)
- (3) M.C. Rodiriguez-Argu ells, E.C.10 pez Silva. J.Sammarti, P.Pelagatti Inorg, Biochem, 99, 2231(2005)
- (4) S.Chandra, A.K.Sharma J. Coord.Chem., 62, 3688,(2009)
- (5) S.G.Shirodkar, P.S. Mane, T.K.Chondhekan Indian J.Chem., 40A,1114(2001)
- (6) S.Chandra, U. kumar Spectrochin Acta, 61 A 219 (2005)
- (7) Anderson, D.A. and Freeman E.S., Polymer Sc.:54, 254 (1961)
- (8) Doyel, C.D., Anal. Chem. 33, 77(1967)
- (9) FleszorM.F., thermal behavior of Teflon phenolic liners in self-lubricating bearings J. thermal. Anal. (49) 219-26 (1997)
- (10) Vyazovkin S. kinetic concept of thermally stimulated reaction in solid: a v historical prospective Int. Rev. Chem (19), 45-60(2000)
- (11) Hurdve N, Prayinaru M, Creanga A; Alazaroies S Hurdne N. The non-isothermal kineticstudy of the thermal degradation processes of some azopolymeric liquid crystals Rev Mat Plast (41), 41-44(2009)
- (12) Agarwal R.K., Prasad S., Guahlot N.: Synthetic, Spectral and thermal properties of some penta coordinated complexes of oxovanadium derived from thiosemicarbazones of 4-amino antipyrine: Trunck J.Chem (28), 691-702 (2004)
- (13) Luoy, chem, P. Zhao F.Q-Hu R.Z. Li S.W.lewa, Y, kinetic and mechanism of the thermal decomposition reaction of 3,3bis(azidomethyl)oxetane 1-tetrahydrofuran copolymer: Chin, J, chem (22), 1219-24(2004).
- (14) Sigurria A.B. Bannach Cu. Rodrigueu E.C.Carvalho C.T.Solid state 2-methoxy benzoates of light trivalent lanthanide synthesis, characterization and other mol. behavior : J.Thermal Anal Cal.(91), 897-902(2008)
- (15) Wang Z.H, Go YZ, Zhang J. Mal, Song HB, Fan ZJ: Synthesis and biological activity of organisation 4-methyl is 1,2,3thiatriazole-7-Carboxylate: J.Agri Food Chem. (58), 2715-19 (2010)
- (16) Fonz X, Zheng Q, Zhijin HS, Synthesis, crystal Struture and biological activity of 4-methyl-1,2,3-thiatriazole containing 1,2,3-triazolo(1,2,3)-b thiadiazoles J.Agire food Chem.(58) 2630-36(2010)
- (17) E.S. Freeman and LB Carroll, the application of thermoanalytical technique to reaction kinetics; The thermoanalytical technique to reaction kinetics; The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate J.Phy.Chem.62,J94(1958)
- (18) C.D.Doylle, kinetic analysis of thermogravimetric data; J.Appl. Polym.Sci.5, 285 (1981)
- (19) Zsako, J, kinetic analysis of thermogravimetric data; J. Phy. Chem.2046(1968) 2406.
- (20). E.S. Freeman, Carrol, J. Phyc. Chem., 1958, 62, 394
- (21). C.D. Dogle, J. Appl. Polyno. Sci., 1961, 5, 285.
- (22). J Zasako, J. Phys. .Chem. 1968, 72, 2406.